INFORMATION CHANGE THE WORLD

International Journal of Wireless and Microwave Technologies(IJWMT)

ISSN: 2076-1449 (Print), ISSN: 2076-9539 (Online)

Published By: MECS Press

IJWMT Vol.11, No.3, Jun. 2021

Numerical Investigation of a Polarization-insensitive Energy Harvesting Metasurface

Full Text (PDF, 448KB), PP.1-8


Views:2   Downloads:0

Author(s)

Ngozi Peggy Udeze, Akaa Agbaeze Eteng

Index Terms

Electric-field-coupled resonator, energy harvesting, metasurface, polarization-insensitive.

Abstract

This paper presents the numerical study of a polarization-insensitive energy harvesting metasurface. The proposed metasurface is designed to harvest ambient electromagnetic (EM) energy at 2.45 GHz. The basic constituent element of the metasurface is an electric-field-coupled (ELC) resonator, which is used to synthesize a 2 x 2 super-cell with polarization-insensitive features. Finally, the metasurface is realized as a 3 x 3 array of ELC super-cells, and presents an energy harvesting efficiency of 95.4% at 2.45 GHz. The achieved energy harvesting efficiency is maintained irrespective of the polarization of the incident excitation. The proposed metasurface configuration holds promise for the implementation of ambient EM harvesters, able to scavenge energy from wireless technologies operating in the 2.45 GHz band.

Cite This Paper

Ngozi Peggy Udeze, Akaa Agbaeze Eteng, " Numerical Investigation of a Polarization-insensitive Energy Harvesting Metasurface", International Journal of Wireless and Microwave Technologies(IJWMT), Vol.11, No.3, pp. 1-8, 2021.DOI: 10.5815/ijwmt.2021.03.01

Reference

[1]Tariq F, Khandaker M, Wong K-K, et al. A Speculative Study on 6G [Internet]. 2019. p. 1–8. Available from: http://arxiv.org/abs/1902.06700.

[2]Cabra J, Castro D, Colorado J, et al. An IoT approach for wireless sensor networks applied to e-health environmental monitoring. Proc. - 2017 IEEE Int. Conf. Internet Things, IEEE Green Comput. Commun. IEEE Cyber, Phys. Soc. Comput. IEEE Smart Data, iThings-GreenCom-CPSCom-SmartData 2017. 2018;2018-January:578–583.

[3]Farahani B, Firouzi F, Chang V, et al. Towards fog-driven IoT eHealth: Promises and challenges of IoT in medicine and healthcare. Futur. Gener. Comput. Syst. 2018;78:659–676.

[4]Karunanithy K, Velusamy B. Cluster-tree based energy efficient data gathering protocol for industrial automation using WSNs and IoT. J. Ind. Inf. Integr. [Internet]. 2020;19:100156. Available from: https://doi.org/10.1016/j.jii.2020.100156.

[5]Jawad HM, Nordin R, Gharghan SK, et al. Energy-efficient wireless sensor networks for precision agriculture: A review.Sensors (Switzerland). 2017;17.

[6]Yoo M, Lim S. Wideband metamaterial absorber using an RC layer. 2013 Asia-Pacific Microw. Conf. Proc. [Internet]. 2013;1227–1229. Available from: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6695080.

[7]Venneri F, Costanzo S, Borgia A. A dual-band compact metamaterial absorber with fractal geometry. Electron. 2019;8:2–9.

[8]Eteng AA. Design of a Compact Fractal Unit Cell Absorber for the 2 . 45 GHz Band. Int. J. Wirel. Microw. Technol. 2021;11:15–21.

[9]Ma YB, Zhang HW, Li YX. Study on a novel dual-band metamaterial absorber by using fractal Koch curves. Wuli Xuebao/Acta Phys. Sin. 2014;63:1–7.

[10]Almoneef TS, Ramahi OM. Metamaterial electromagnetic energy harvester with near unity efficiency. Appl. Phys. Lett. [Internet]. 2015;106:153902. Available from: http://aip.scitation.org/doi/10.1063/1.4916232.

[11]Alavikia B, Almoneef TS, Ramahi OM. Wideband resonator arrays for electromagnetic energy harvesting and wireless power transfer. Appl. Phys. Lett. [Internet]. 2015;107. Available from: http://dx.doi.org/10.1063/1.4937591.

[12]A. Saleh A, S. Abdullah A. A Novel Design of Patch Antenna Loaded with Complementary Split-Ring Resonator and L- Shape Slot for (WiMAX/WLAN) Applications. Int. J. Wirel. Microw. Technol. 2014;4:16–25.

[13]Kaur J. Dual Band High Directivity Microstrip Patch Antenna RotatedStepped-Impedance Array Loaded with CSRRs for WLAN Applications. Int. J. Wirel. Microw. Technol. 2016;6:1–11.

[14]Abidin BMZ, Khalifa OO, Elsheikh EMA, et al. Wireless energy harvesting for portable devices using Split Ring Resonator. Proc. - 2015 Int. Conf. Comput. Control. Networking, Electron. Embed. Syst. Eng. ICCNEEE 2015. 2016;362–367.

[15]Alavikia B, Almoneef TS, Ramahi OM. Electromagnetic energy harvesting using complementary split-ring resonators. Appl. Phys. Lett. [Internet]. 2014;104:163903. Available from: http://aip.scitation.org/doi/10.1063/1.4873587.

[16]Costanzo S, Venneri F. Polarization-insensitive fractal metamaterial surface for energy harvesting in iot applications. Electron. 2020;9:1–12.

[17]Costanzo S, Venneri F. Innovative Fractal-Based Metasurface for Energy Harvesting. URSI GASS [Internet]. Rome; 2020. p. 1–3. Available from: http://www.ursi.org/proceedings/procGA20/papers/PID6351651.pdf.

[18]Schurig D, Mock JJ, Smith DR. Electric-field-coupled resonators for negative permittivity metamaterials. Appl. Phys. Lett. 2006;88:1–3.

[19]KangHyeok L, Hong SK. Rectifying Metasurface with High Efficiency at Low Power for 2.45GHz Band. IEEE Antennas Wirel. Propag. Lett. [Internet]. 2020;1–1. Available from: https://ieeexplore.ieee.org/document/9210215/.

[20]Aldhaeebi MA, Almoneef TS. Planar dual polarized metasurface array for microwave energy harvesting. Electron. 2020;9:1–13.

[21]El Badawe M, Almoneef TS, Ramahi OM. A metasurface for conversion of electromagnetic radiation to DC. AIP Adv. [Internet]. 2017;7. Available from: http://dx.doi.org/10.1063/1.4978321.

[22]Almoneef TS, Erkmen F, Ramahi OM. Harvesting the Energy of Multi-Polarized Electromagnetic Waves. Sci. Rep. [Internet]. 2017;7:1–14. Available from: http://dx.doi.org/10.1038/s41598-017-15298-5.

[23]Yu F, Yang X, Zhong H, et al. Polarization-insensitive wide-angle-reception metasurface with simplified structure for harvesting electromagnetic energy. Appl. Phys. Lett. 2018;113:1–5.

[24]Hu W, Yang Z, Zhao F, et al. Low-Cost Air Gap Metasurface Structure for High Absorption Efficiency Energy Harvesting. Int. J. Antennas Propag. [Internet]. 2019;2019:1–8. Available from: https://www.hindawi.com/journals/ijap/2019/1727619/.